Functional Principal Component Analysis via Regularized Basis Expansion and Its Application
نویسندگان
چکیده
Recently, functional data analysis (FDA) has received considerable attention in various fields and a number of successful applications have been reported (see, e.g., Ramsay and Silverman (2005)). The basic idea behind FDA is the expression of discrete observations in the form of a function and the drawing of information from a collection of functional data by applying concepts from multivariate data analysis. There are some reports discussing principal component analysis for functional data. We introduce the regularized functional principal component analysis for multi-dimensional functional data set, using Gaussian radial basis functions. The use of the proposed method is illustrated through the analysis of the three-dimensional (3D) protein structural data by converting the 3D protein data to the 3-dimensional functional data set. The visual inspection showed that the PC (principal component) plot mostly coincided with the biological classification.
منابع مشابه
Functional factorial K-means analysis
A new procedure for simultaneously finding the optimal cluster structure of multivariate functional objects and finding the subspace to represent the cluster structure is presented. The method is based on the k-means criterion for projected functional objects on a subspace in which a cluster structure exists. An efficient alternating least-squares algorithm is described, and the proposed method...
متن کاملThe Geometry Of Kernel Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variat...
متن کاملFunctional Principal Component Analysis of Vocal Tract Area Functions
This paper shows the application of a functional version of principal component analysis to build a parametrization of vocal tract area functions for vowel production. Sets of measured area values for ten vowels are expressed as smooth functional data and next decomposed into a mean area function and a basis of orthogonal eigenfunctions. Interpretations of the first four eigenfunctions are prov...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملSome Perspectives of Smooth and Locally Sparse Estimators
In this thesis we develop some new techniques for computing smooth and meanwhile locally sparse (i.e. zero on some sub-regions) estimators of functional principal components (FPCs) in functional principal component analysis (FPCA) and coefficient functions in functional linear regression (FLR). Like sparse models in ordinary data analysis, locally sparse estimators in functional data analysis e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006